Posts

Showing posts matching the search for Menyelesaikan Pertidaksamaan Kuadrat Dengan Metode Aljabar

Menyelesaikan Pertidaksamaan Kuadrat dengan Grafik Terbaru

Image
Coba kalian perhatikan beberapa bentuk pertidaksamaan berikut ini. ■x2– 4x + 3 < 0 ■x2 + 2x – lima ≤ 0 ■2x2– 11x + 5 > 0 ■3x2– x – dua ≥ 0 Keempat bentuk pertidaksamaan pada atas memuat variabel x berpangkat 2. Pertidaksamaan yg bentuknya demikian diklaim menggunakan pertidaksamaan kuadrat dalam variabel x. Dalam matematika, bentuk baku pertidaksamaan kuadrat pada variabel x terdapat empat macam, yaitu ■ax2 + bx + c < 0 (kurang dari) ■ax2 + bx + c ≤ 0 (kurang dari sama menggunakan) ■ax2 + bx + c > 0 (lebih dari) ■ax2 + bx + c ≥ 0 (lebih dari sama dengan) Dengan a, b serta c merupakan bilangan real serta a ≠ 0. Penyelesaian atau himpunan penyelesaian dari pertidaksamaan kuadrat dalam variabel x bisa ditentukan dengan 2 cara, yaitu menggunakan menggunakan metode berikut adalah. 1. Sketsa grafik fungsi kuadrat 2. Garis bilangan Nah pada kesempatan kali ini, kita akan belajar tentang cara memilih himpunan penyelesaian pertidaksamaan kuadrat dengan menggunakan sketsa grafik fun

Menyelesaikan Pertidaksamaan Kuadrat dengan Garis Bilangan Terbaru

Image
Dalam artikel sebelumnya, telah dijelaskan mengenai cara menentukan himpunan penyelesaian pertidaksamaan kuadrat dengan memakai grafik fungsi kuadrat atau grafik parabola. Nah, dalam artikel ini kita akan belajar tentang bagaimana caranya menentukan penyelesaian pertidaksamaan kuadrat dengan menggunakan diagram garis sapta. Sebagai contoh, kita akan memilih himpunan penyelesaian pertidaksamaan kuadrat x2– 4x + 3 < 0 menggunakan memakai metode garis sapta. Langkah-langkah yg perlu kalian lakukan adalah menjadi berikut. Langkah #1 Tentukanlah nilai-nilai nol (bila ada) dari bagian ruas kiri pertidaksamaan kuadrat. Caranya merupakan menggunakan menggunakan metode pemfaktoran yaitu sebagai berikut. ⇔ x2– 4x + 3 = 0 ⇔ (x – 1)(x – 3) = 0 ⇔ x = 1 atau x = 3 Langkah #2 Gambarlah nilai-nilai nol yg diperoleh pada langkah #1 dalam bentuk diagram garis sapta. Dan perlu kalian perhatikan, bahwa nilai-nilai nol tadi membagi garis menjadi 3 interval (selang), yaitu x < 1, 1 < x < tiga

Cara Menentukan Penyelesaian Pertidaksamaan Linear Satu Variabel Terbaru

Image
Bentuk Umum Pertidaksamaan Linear Perhatikan beberapa bentuk pertidaksamaan ini dia. (i) 2x – 1 < 0 (ii) 6x + 4 ≤ 0 (iii) 3x – 6 > 0 (iv) 2x – lima ≥ 0 Setiap pertidaksamaan pada atas memuat variabel x berpangkat atau berderajat 1 (satu). Pertidaksamaan yg berciri demikian dinamakan pertidaksamaan linear pada variabel x. Bentuk generik (baku) dari pertidaksamaan linear dalam variabel x ada 4 macam, yaitu menjadi berikut: ■ax + b < 0 ■ax + b ≤ 0 ■ax + b > 0 ■ax + b ≥ 0 Cara Penyelesaian Pertidaksamaan Linear Satu Variabel Menyelesaikan sebuah pertidaksamaan linear satu variabel bisa diartikan menjadi mencari bentuk paling sederhana menurut pertidaksamaan linear tadi. Bentuk paling sederhana ini dianggap penyelesaian dari pertidaksamaan linear satu variabel. Penyelesaian dari suatu pertidaksamaan diperoleh dengan proses manipulasi aljabar terhadap pertidaksamaan semula. Dalam proses manipulasi aljabar buat menentukan penyelesaian suatu pertidaksamaan, digunakan sifat-sifat s