Posts

Showing posts matching the search for Menentukan Akar Persamaan Kuadrat

Pembuktian Rumus ABC dengan Melengkapkan Kuadrat Sempurna Terbaru

Image
Rumus ABC (rumus kuadrat) atau kebanyakan orang menyebutnya sebagai rumus “kecap” lantaran sama dengan salah satu merek dagang kecap (bumbu dapur) adalah sebuah rumus yang dipakai buat mencari akar-akar persamaan kuadrat . Dalam mencari akar persamaan kuadrat, biasanya kita mencoba memfaktorkannya terlebih dahulu. Namun, jika menemui kendala, barulah kita menggunakan rumus ABC sebagai salah satu alternatifnya. Bentuk rumus ABC ini adalah sebagai berikut. x1,2 = –b ± √ b2– 4ac 2a Rumus ABC tadi sebenarnya dari berdasarkan bentuk umum persamaan kuadrat yg diselesaikan menggunakan melengkapkan bentuk kuadrat paripurna. Oleh karena itu, kita akan menerangkan dari-usul rumus ABC ini dengan teknik melengkapkan kuadrat paripurna. Namun, jika kalian belum paham tentang teknik melengkapkan kuadrat paripurna, silahkan kalian pelajari dahulu artikel tentang cara menentukan akar persamaan kuadrat dengan melengkapkan kuadrat sempurna . Pembuktian rumus ABC ini, sanggup kita mulai berdasarkan bentu

Fungsi Kuadrat Bentuk Umum dan Cara Menggambar Grafiknya Terbaru

Image
Dalam matematika, jenis-jenis fungsi ada tujuh macam, dua di antaranya adalah fungsi linear dan fungsi kuadrat. Fungsi linear atau fungsi polinom (sukubanyak) berderajat satu pada variabel x merupakan suatu bentuk fungsi f(x) = ax + b dimana a, b ∈ R  serta a ≠ 0 buat seluruh x dalam wilayah asalnya. Bentuk grafik fungsi linear dalam bidang Cartesian merupakan berupa garis lurus. Lalu bagaimana dengan bentuk umum serta grafik fungsi kuadrat? Untuk menjawab pertanyaan tadi, silahkan kalian pelajari artikel ini menggunakan seksama. Bentuk Umum Fungsi Kuadrat Untuk tahu definisi atau pengertian fungsi kuadrat serta bentuk umumnya, perhatikan beberapa contoh fungsi ini dia. •f(x) = x2– 1 •f(x) = 2x2– 6x •f(x) = x2– 4x + 8 •f(x) = –3x2 + 4x – 9 Dari keempat contoh fungsi di atas, pangkat tertinggi variabel x pada tiap-tiap fungsi sama menggunakan 2. Fungsi yang memiliki karakteristik seperti itu disebut fungsi kuadrat pada variabel x. Dengan demikian, bentuk generik fungsi kuadrat bisa d

Cara Menentukan Penyelesaian SPLK Berbentuk Eksplisit Terbaru

Image
Sistem persamaan linear serta kuadrat atau disingkat SPLK adalah sistem persamaan yg terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel 2. Berdasarkan ciri serta bagian bentuk kuadratnya, sistem persamaan linear dan kuadrat (SPLK) bisa dibedakan sebagai 2 jenis, yaitu SPLK dengan bagian kuadrat berbentuk eksplisit dan SPLK dengan bagian kuadrat berbentuk implisit. Nah, dalam kesempatan kali ini kita akan belajar tentang cara menentukan himpunan penyelesaian dari SPLK dengan bagian kuadratnya berbentuk eksplisit. Secara umum, bentuk baku dari SPLK dengan bagian kuadrat berbentuk eksplisit bisa ditulis sebagai berikut. y = ax + b ……………. (bagian linear) y = px2 + qx + r ……………. (bagian kuadrat) Dengan a, b, p, q, dan r merupakan sapta-bilangan real. Untuk tahu cara menentukan penyelesaian atau himpunan penyelesaian sistem persamaan linier dan kuadrat, simaklah SPLK ini dia. y = x + 2 ………. Bagian linear y = x2 …………… bagian kuadrat Subtitusikan

Kumpulan Contoh Soal SPLDV SPLTV SPLK SPKK dan Jawabannya Terbaru

Image
Dalam metematika kita mengenal beberapa jenis sistem persamaan, yaitu Sistem Persamaan Linear Dua Variabel (SPLDV), Sistem Persamaan Linear Tiga Variabel (SPLTV), Sistem Persamaan Linear serta Kuadrat (SPLK), serta Sistem Persamaan Kuadrat dan Kuadrat (SPKK). Nah, dalam kesempatan kali ini kita akan menyajikan kumpulan contoh soal dan pembahasan berdasarkan keempat macam sistem persamaan tersebut. Silahkan disimak baik-baik. #1 Contoh Soal Sistem Persamaan Linear Dua Variabel (SPLDV) 1. Dengan memakai metode subtitusi, tentukanlah himpunan penyelesaian dari SPLDV berikut adalah. 2x–3y = 7 3x + 2y = 4 Jawab 2x–3y = 7 ………. Pers. (7) 3x + 2y = 4 ………. Pers. (8) Dari persamaan (7) kita peroleh persamaan x menjadi berikut. ⇔ 2x–3y = 7 ⇔ 2x = 7 + 3y ⇔ x = 7 + 3y 2 Subtitusikan persamaan x ke dalam persamaan (8) sebagai berikut. ⇔ 3 ( 7 + 3y ) + 2y = 4 2 ⇔ 3(7 + 3y) + 4y = 8 (kedua ruas dikali dua) ⇔ 21 + 9y + 4y = 8 ⇔ 21 + 13y = 8 ⇔ 13y = 8–21 ⇔ 13y = -13 ⇔ y = -1 Untuk memilih nilai x, kita